奇点文学社

手机浏览器扫描二维码访问

第312章 引力透镜的用处(第1页)

1986年,着名天体物理学家Paczynski在一篇论文中首次正式引入了“微引力透镜”这个称呼,并对其理论作了全面的阐述。此后,这一领域得到了迅速发展。

最早,寻找微引力透镜现象的人主要想通过它来研究银河系伴星系中那些一小团一小团的暗物质。但在最近几年里,人们发现,微引力透镜实际上是寻找地外行星的一种有效手段。通过观测恒星的亮度变化,可以推测出是否存在围绕其运行的行星。

想法其实很简单:当近处的恒星(充当透镜)与背景恒星在天球上近距离擦身而过时(实际上它们之间的距离很远,但从我们的视角来看,两颗恒星在天空中的位置几乎重合),背景恒星的亮度会因为透镜效应而突然发生变化。如果那颗充当透镜的恒星并非孤单一人,而是拥有一颗或多颗伴侣,那么它对背景恒星产生的光变就会呈现出独特的特征。通过建立数学模型并拟合数据,科学家们能够确定行星系统与恒星之间的距离以及行星与恒星的质量比例。

这种寻找外星行星的方法具有极大的吸引力。首先,该方法对行星的质量不太敏感,与其他只能观测较大外星行星的方法不同。微引力透镜让我们有可能追踪到地球质量级别的行星。

这个方法其实对于行星相对于恒星的位置十分敏感,然而最容易探测到的一些区间,恰恰与最有可能会存在生命的行星所出在的区间相类似。

不过,要实现这样的观测却面临着巨大的挑战。首先,恒星之间的引力透镜现象极其罕见,需要观察数百万颗麦哲伦云中的恒星才能有幸目睹一次。其次,行星系统的微引力透镜现象可视为由恒星引发的主光变,再加上由行星引起的次级光变。然而,这一过程中的次级光变持续时间极短。更糟糕的是,尽管通过这种方法可以观测到行星,但随后由于两颗恒星逐渐远离,我们几乎无法进行追踪观测。

尽管如此,科学家们依然保持乐观态度。当初爱因斯坦曾断言这些事件完全不可能被观测到,但如今我们已能以较高的精度观测到它们。或许在不远的将来,上述种种困难都将迎刃而解。

引力透镜分为强和弱两种类型,但这种分类方法并不完全准确。实际上,这很大程度上取决于我们能否通过肉眼观察到背景天体的像发生了扭曲。如果能明显地看到扭曲现象,那么这个引力透镜就可以被归类为强引力透镜;反之,如果无法看出明显的变化,则可归为弱引力透镜。然而,这种简单的划分方式并不能完全描述引力透镜的真实特征。事实上,那些容易被观察到的往往是较为极端的例子。例如,星系可能会被拉伸成细长的形状,看起来像是哈哈镜中的倒影。或者,它们可能会出现多个像,这些都是比较明显的特征。但对于大多数情况而言,我们很难直接看出引力透镜效应。这是因为宇宙中的天体分布相对稀疏,而空旷的区域更多。因此,两个天体非常接近且形成引力透镜效应的情况相对较少。此外,从观测角度来看,背景星系本身的形状也并非完美的几何图形。以椭圆星系为例,即使光线受到轻微偏折,其仍然保持着椭圆形的形态,这使得我们难以察觉其中的差异。

由于距离过于遥远,我们无法得知它的真实面貌,自然也难以描述它是如何发生扭曲的。然而,这种现象却普遍存在着。引力作为一种长程力,即使在远处其作用变弱,但依然不会消失。可以想象一下,当光线穿越宇宙时,就如同行走于江湖之中,难免会遭遇“暗箭”,也就是引力透镜效应。

接下来的问题便是如何测量微弱的引力透镜效应呢?通常情况下,人们采用观察大量星系形状并进行统计学分析的方法来解决这个难题。这个构思简直太妙了!我们可以先假设远方的星系虽然具有一定的椭圆度,但这些椭圆度的大小和方向都是完全随机的。这样一来,如果我们选取一小片天空区域,并对其中所有星系的椭圆度进行平均计算,理论上结果应该接近于零。但是,倘若存在引力透镜效应,例如这片小区域内的星系都受到同一个透镜星系的影响,那么它们的椭圆度将会出现明显的偏差。

从单个角度来看,这些星系似乎并没有什么特别之处,但当它们被放置在一起时,便会呈现出一种特殊的现象:它们的形状都倾向于某个特定的方向(实际上,这种倾向性非常微弱,因此需要进行高精度的测量)。基于此,我们可以将这些星系椭圆率的平均值视为引力透镜信号强度的一个预估指标。然后,如果我们对一片天空区域内的每个小块区域都执行相同的操作,最终将会获得一张引力透镜信号的分布图表。借助一些特定的算法,我们能够根据这张图表反向推导出这片天空区域二维的物质分布情况。

弱引力透镜作为一种强大的工具,具有独特的优势。其背后的物理学原理简洁明了,只取决于空间中的物质分布。天文学家们利用它来解决众多问题,尤其是在寻找暗物质方面发挥着重要作用。暗物质占据了宇宙实物总量的绝大部分,大约是普通物质的十倍之多。然而,由于暗物质不会发射任何电磁辐射,传统的观测手段无法直接探测到它。

然而,尽管它没有电磁相互作用,但由于其具有质量,必然会产生引力效应。而对于探测引力效应而言,弱引力透镜技术可谓是独具优势。如今,人们广泛利用弱引力透镜来探寻星系团,精确测量星系团内部的暗物质分布情况,确定大尺度范围内的物质分布及其相关性。此外,这一技术还能用于限制暗能量的参数。

喜欢诸天:从盗综开始掠夺万界请大家收藏:()诸天:从盗综开始掠夺万界

穿越初体验  穿书八零:假千金要掀桌子啦!  末世冷血怎么了?惹我老婆都得死  让你叠纸枪,你去警局备案?  妖来觅酒家  我当僵尸的那几年  赛博朋克:超能力行者  哄他,宠他,大小姐又在野蛮甜撩  最强六皇子  厄运缠身  我和芙宁娜的悄悄话  神殉:羊图霸业  洛水盗墓贼  两只咸鱼在七十年代  万人嫌假少爷被豪门掌权人盯上了  被全府读心后,我喝奶躺赢成团宠  考完进魔法院,分数变魔法值  虐念情深之陆少的天价小娇妻  天降长生道果,我苟道躺平修仙  缘分的罗盘  

热门小说推荐
我的绝色大小姐

我的绝色大小姐

我的绝色大小姐简介emspemsp我的绝色大小姐是王熙叶轻雪的经典都市言情类作品,我的绝色大小姐主要讲述了失明三年,被送到小家族当了一名上门女婿,重见光明那天,我看见王熙叶轻雪最新鼎力大作,年度必看都市言情。耽美文(danmei...

在港综成为神话

在港综成为神话

在港综成为神话简介emspemsp关于在港综成为神话穿越港综世界!与钟天正共唱友谊之光!与陈家驹惊险一跳!成为周星星的老师!营救还是少年的陈浩南!大漠黄沙中与金镶玉共谱一曲!黑木崖上东方不败做了手术!义庄之内与九叔共捉僵尸!手持月光宝盒,穿越时空!本书又名我在港综有间酒吧...

杀了那个男主

杀了那个男主

郁青瑶是一朵伪白莲花,真绿茶婊。她是一个妖女,一个戏精,一个坏女孩。重生到类似聊斋的可怕古代世界,走上修仙路。她的人生志向是成为所有男子眼中的白月光,内心深处最柔软的朱砂痣。李怀德是修道天才,人生志向是娶郁青瑶为妻,虽百死而无悔。然后他真的被郁青瑶杀了上百次。他的漫漫追妻路坎坷无比,简直是一寸相思一寸血。他能抱得美人归吗?如果您喜欢杀了那个男主,别忘记分享给朋友...

超级神豪科技系统

超级神豪科技系统

超级神豪科技系统简介emspemsp神豪是我的梦想,自从有了神豪系统,每天都做不完的任务。李林飞有了神豪系统后。每天想着怎么花钱。哎。花钱真是个技术活呀。花不完还有惩罚,哎,真特么烦啦。精彩收藏woo18vipWoo18Vi...

逗趣萌宝:神仙姐姐抱回家

逗趣萌宝:神仙姐姐抱回家

刚被渣男劈腿闺蜜陷害,就遇全城第一美男,还附带龙凤萌宝?白语灵意外重生,飚演技,斗亲戚,驯精锐,重返娱乐圈巅峰,在外浪破天际,回家却噗通,某女跪在搓衣板上老公,山无棱,天地合,人家只爱你一个!呵。马屁无效。某女狗腿似的捏肩捶背宝贝,青梅竹马都是浮云,天长地久的只有你哼。顺毛失败。易景谦,你到底想要什么?男人将她狠狠拥在怀里,俊脸逼近,咬牙切齿,想要。荧幕上如高岭之花的神仙姐姐,在景谦大帝面前居然秒变小白兔,任他搓圆搓扁。只因,他爱她,至死不渝。邪魅不羁白小姐VS高贵美艳易先生,女强男更强,身心干净,狗粮满满!如果您喜欢逗趣萌宝神仙姐姐抱回家,别忘记分享给朋友...

我在神秘复苏世界开冒险屋

我在神秘复苏世界开冒险屋

重生的唐龙发现自己来到了神秘复苏的世界,这里灵异横行,厉鬼遍地,幸好的是他拥有冒险屋陈大锤同款的黑色手机,可以将厉鬼抓来变成自己鬼屋中的恐怖场景。饿死鬼出生的第七中学,鬼差坐落的黄岗村自...

每日热搜小说推荐